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Complete Positivity and Subdynamics in Quantum
Field Theory†

B. Vacchini1

Received December 8, 1999

The relevance that the property of complete positivity has had in the determination
of quantum structures is briefly reviewed, together with recent applications to
neutron optics and quantum Brownian motion. A possible useful application and
generalization of this property to the description of macroscopic systems in
quantum mechanics is discussed on the basis of recent work on the derivation
of subdynamics in the Heisenberg picture of slowly varying degrees of freedom
inside nonrelativistic quantum field theory.

1. INTRODUCTION

Even though a thorough understanding of quantum mechanics (QM) is
still far away and many different readings and interpretations of QM coexist
in the scientific community, major progress has been made in the study and
determination of quantum structures, both from a logical and mathematical
point of view. The logical studies on QM originated in the seminal paper of
Birkhoff and von Neumann (1936) and have by now reached important
results, mainly thanks to the basic notions of effect and effect algebras (for
a recent review see Dalla Chiara and Giuntini, n.d.). On the physical and
mathematical side it is hardly feasible to do justice to the full inventory of
mathematical tools and properties that have been introduced and understood
to be relevant to the realm of QM, and especially quantum measurement
theory. In fact, all studies concerning quantum structures aim at a better
understanding of the foundations of QM and therefore often address either
directly or indirectly the subject of measurement theory.
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As far as this paper is concerned, we are mainly interested in notions and
tools that have grown out of the so-called operational approach to QM (for a
recent review see Busch et al., 1995), whose physical origin is to be traced
back to the original work of Ludwig and coworkers on the foundations of QM
(Ludwig, 1983). As a matter of fact, the work of Ludwig, which was originally
intended to obtain a reconstruction of the Hilbert space structure of QM based
on a statistical formulation of the theory relying on a classical, objective
description of preparation and registration apparatuses, apart from giving a
fundamental contribution to the foundations of QM, has also somehow “inciden-
tally” led to the introduction of concepts, such as those of effect and operation,
that are by now very useful in applications of QM, such as quantum optics
and quantum information. In particular, the notions of effect and operation,
together with more general and refined mathematical tools derived from these,
such as those of coexistent observable, effect-valued measure, and instrument,
have made the very formulation of continuous measurement feasible (Srinivas
and Davies, 1981; Barchielli et al., 1983), perhaps one of the major achieve-
ments within quantum measurement theory. This result, though somehow to
be expected on the basis of experimental evidence—consider, for example,
the shelving effect (Dehmelt, 1990)—was certainly not obvious in the early
days of QM, and provides some evidence substantiating the conjecture of
Ludwig about the possibility of founding QM on macroscopic systems to be
objectively described in a suitable trajectory space.

In the sequel we will deal in particular with the notion of complete
positivity (CP), whose relevance to the realm of QM was first realized by
Kraus (1971) and Lindblad (1976). This property has recently played an out-
standing role in the study of open quantum systems, both at a fundamental as
well as at a phenomenological level, and we will give a few important examples
in which it has actually led to the determination of specific quantum structures.
We will then argue how CP, and in particular a generalized, mathematically
less stringent version of this property, might play a role in the determination
of subdynamics inside nonrelativistic quantum field theory. This will be done
on the basis of recent work carried out in the fields of neutron optics (Lanz
and Vacchini, 1997a,b) and quantum Brownian motion (Lanz and Vacchini,
in preparation), as well as a recently outlined approach for the description of
the dynamics of slowly varying degrees of freedom within a macroscopic
system (Lanz et al., 1997; Lanz and Vacchini, 1998). This should shed some
light on possible useful extensions of the property of CP from one-particle
QM to the realm of quantum field theory applied to many-body systems.

2. COMPLETE POSITIVITY
Let us now briefly introduce the definition of CP. The most general

representation of the preparation of a physical system described in a Hilbert
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space * is given by a statistical operator, that is, an operator in the space
7#(*) of trace class operators on *, positive and with trace equal to one.
In particular, we call _(*) the convex set of statistical operators

_(*) 5 {r̂ P 7#(*).r̂ $ 0, Trr̂ 5 1}

Consider now a mapping 8 defined on the space of trace class operators
into itself

8: 7#(*) → 7#(*)

possibly corresponding to a Schrödinger-picture description on the states. We
say that the map 8 is completely positive, or equivalently has the property
of complete positivity (Kraus, 1983; Alicki and Lendi, 1987), if and only if
the adjoint map 88 acting on the space @(*) of bounded linear operators,
dual to 7#(*),

88: @(*) → @(*)

and therefore corresponding to a Heisenberg-picture description in terms of
observables, satisfies the inequality

o
n

i,j51
^ci.88(B̂ †

i B̂j).cj & $ 0

∀n P N, ∀{ci} P *, ∀{B̂i} P @(*) (2.1)

For n 5 1 one recovers the usual notion of positivity, while for bigger n this
is actually a nontrivial requirement.

It is immediately seen that if 88 has the factorization property

88(Â†B̂ ) 5 [88(Â )]† 88(B̂ ), ∀Â, B̂ P @(*)

then it is CP, so that any unitary evolution is CP. In this sense one can see
CP as a property that is worth retaining when shifting from the unitary
dynamics for closed systems to a more general dynamics for the description
of open systems. In fact, the general physical argument for the introduction
of CP is the following. Consider a system 61 described in *1, whose dynamics
is given by the family of mappings

8: 7#(*1) → 7#(*1)

and an n-level system 62 described in *2 5 Cn, whose dynamics can be
neglected, so that Ĥ2 5 0. Because the two systems do not interact, the map
8̃ describing their joint evolution

8̃: 7#(*1 ^ Cn) → 7#(*1 ^ Cn)

will be simply given by the tensor product 8̃ 5 8 ^ 1. But the dynamical
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map 8̃ must of course be positive and this is equivalent to the requirement
that 8 be CP.

The property of CP has already shown to be particularly relevant in the
determination of quantum structures, and in the sequel we will give two
important examples in this connection. Let us consider first the notion of
operation, which is the basic tool for the description of changes experienced
by a physical system. An operation ^ is a positive linear map acting on the
space of trace class operators and sending statistical operators in positive
operators with trace less than or equal to one,

^: 7#(*) → 7#(*), 0 # Tr^(r̂) # 1, ∀r̂ P _(*)

Operations describe the repreparations of a statistical collection based on
some measurement outcome, and the connection between such mappings and
CP was first considered by Kraus (1983) and Hellwig (1995). The requirement
of CP, according to the Stinespring representation theorem, determines the
general structure of such mappings to be

^(T̂ ) 5 o
kPK

Â †
kT̂Âk , ∀T̂ P 7#(*),

K , N, 0 # o
kPK

Â †
k Âk 5 F̂ # 1

where F̂ is the effect associated to the operation, even though not uniquely
specifying it. Let us note that the notion of operation, previously considered
only in the studies of fundamental nature about QM and quantum measure-
ment theory, is now being used by a much broader physical community
thanks to the applications in quantum optics and more recently quantum
communication and quantum information theory. For example, CP trace-
preserving operations are by now taken as the standard definition of quantum
channels (Schumacher, 1996).

The other example comes from the field of quantum dynamical semi-
groups (Alicki and Lendi, 1987), used for the description of the irreversible
dynamics of open quantum systems, typically the reduced dynamics of sys-
tems interacting with an external system, such as a heat bath or a measuring
instrument. In Heisenberg picture, quantum dynamical semigroups are given
by collections of positive mappings

88t : @(*) → @(*), t $ 0, 8801 5 1

which satisfy the semigroup composition property

88s88t 5 88s1t, s, t $ 0

and which are normal. Under these conditions a generally unbounded genera-
tor +8 defined on an ultraweakly dense domain exists such that
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d
dt

88t B̂ 5 +888t B̂

for all B̂ in the domain. If one further asks the semigroup to be norm
continuous, so that the generator is a bounded map, it can be shown, as has
been done by Lindblad (1976), that CP determines the general expression
for the generator to be of the form

+8B̂ 5
i
"

[Ĥ, B̂ ] 2
1
2 Ho

j
V̂jV̂ †

j , B̂J 1 o
j

V̂ †
j B̂V̂jV̂j , o

j
V̂jV̂ †

j P @(*),

Ĥj 5 Ĥ †
j P @(*)

This structure of the master equation, possibly allowing for unbounded opera-
tors or even quantum fields, appears in many applications in very different
fields of physics and is often taken as a starting point for phenomenological
approaches. It accounts for a non-Hamiltonian dynamics and has been exten-
sively used in the formulation of continuous measurement theory and espe-
cially in quantum optics.

3. SUBDYNAMICS IN QUANTUM FIELD THEORY

Inspired by Ludwig’s work, we take the attitude according to which any
macroscopic physical system is actually defined by the preparation procedure
which separates it from the rest of the world. Such systems are to be described
in terms of interacting and confined quantum fields, whose choice depends
on the considered description level. In fact, realistic confinement and isolation
can only be considered with reference to a coarse graining of the time scale,
which allows us to consider a breakup of the correlations with the environment
and to replace the actual physical walls by suitably idealized boundary condi-
tions. For the description of the system on the given time scale we look for
the subdynamics of a subset of variables which are slowly varying on this
time scale. Contrary to older attempts at the derivation of a master equation
for the reduced dynamics of the statistical operator, we work in the Heisenberg
picture on a restricted set of observables whose choice depends on the particu-
lar features of the system and of the preparation procedure. In considering
the subdynamics of these quantities, on the basis of the experienced gained
with one-particle QM, we will ask for the property of CP, a viewpoint shared
by Streater (1995). Using the field-theoretic formalism of second quantization,
observables have the general expression

Â 5 o
h1...hn
k1...kn

a†
hn . . . a†

h1 !(hn , . . . , h1, k1, . . . , k2)ak1 . . . akn

so that, recalling (2.1), this typical structure in terms of a block of annihilation
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operators and a block of creation operators is a natural candidate for the
requirement of CP. Moreover, typical slow variables will be positive densities
of conserved quantities, such as mass and energy, which are easily expressed
in a field formalism and whose positivity has to be preserved throughout
the evolution.

Before going considering some concrete examples of this formal scheme,
let us briefly mention the possible relevance of this approach to the founda-
tions of QM. A general formulation of the theory of macroscopic systems
in terms of a non-Hamiltonian irreversible dynamics for a selected set of
observables could be the starting point for their description inside continuous
measurement theory, thus possibly recovering a classical, objective descrip-
tion, but objectively described macroscopic systems build the basis on which
Ludwig founded his remarkable approach to the foundations of QM.

The simplest application of the proposed formal scheme consists in the
description of a microsystem interacting with a macroscopic system supposed
to be at equilibrium, typically a particle interacting with matter. In this case
the particle constitutes the slow degree of freedom with respect to the fast
relaxation time of the macroscopic system and a Markov approximation for
the particle’s dynamics should hold, provided the two time scales are sepa-
rated. We here briefly sketch the main points in the formalism and calculation
[for details see Lanz and Vacchini (1997a)]. In second quantization the Hamil-
tonian reads

Ĥ 5 Ĥ0 1 Ĥm 1 V̂, Ĥ0 5 o
f

Ef a
†
f af , [af , a†

g]7 5 dfg

The whole system is described in *, while the Hilbert space for the microsys-
tem *(1) is spanned by the energy eigenstates uf , so that af is the destruction
operator for the microsystem, whose statistics is left unprejudiced, in the
state uf . Ĥm describes matter and V̂ is the interaction potential. Since we are
interested in the description of a single particle, we take a statistical operator
of the form

r̂ 5 o
gf

a†
gr̂maf r(1)

gf

where r̂m describes matter and r(1)
gf is a positive matrix with trace equal to

one. In order to extract the subdynamics of the particle, we consider field
observables of the form Â 5 (h,k a†

hA(1)
hk ak and exploit the reduction formula

Tr*(Âr̂) 5 Tr*(1)(Â(1)r̂(1))

where (1) denotes operators in *(1). What we have to evaluate is the time
evolution, in the Heisenberg picture, of bilinear structures of field operators
a†

h ak on a suitable time scale-much longer than the microphysical interaction
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time t0. To do this, we exploit a superoperator formalism, thus considering
maps acting on the algebra of creation and destruction operators, for example,

*80(a†
hak) 5

i
"

[Ĥ0 1 Ĥm, a†
hak] 5

i
"

(Eh 2 Ek)a†
hak

and exploit techniques of scattering theory. We thus work in a Markov
approximation considering slow variables on the given time scale, so that
the quasi-diagonality condition "/.Eh 2 Ek. $ t À t0 should be satisfied.
We also suppose suitable smoothness properties of the T-matrix, so that there
are no bound states. As a result we obtain the following structure for the
evolution mapping on a time t which is small with respect to the particle’s
dynamics, though much larger than the relaxation time of the macrosystem:

88(t)(a†
hak) 5 a†

hak 1 t+8a†
hak

where the generator restricted to this typical bilinear structure of field opera-
tors in the quasi-diagonal case is given by:

+8(a†
hak) 5

i
"

[Ĥ0 1 V̂ [1], a†
hak] 2

1
"

{[Ĝ[1], a†
h]ak 2 a†

h[Ĝ[1], ak]}

1
1
" o

l
R̂ [1]†

hl R̂ [1]
kl

the index [1] denoting one-particle operators, and V̂ [1] and Ĝ[1] being linked
respectively to the self-adjoint and anti-self-adjoint parts of the T-matrix. Let
us note that due to the presence of the minus sign the term between curly
brackets cannot be rewritten as a simple commutator. CP of the mapping
88(t) restricted to these simple bilinear field structures

o
n

i, j51
^ci.88(t) 1ohk

a†
h^h.B̂†

i B̂j.k&ak2.cj & $ 0

can be seen from the decomposition which holds true for an infinitesimal
positive time dt,

a†
hak 1 dt +8(a†

hak) 5 Hah 1
i
"

dt[Ĥ0 1 V̂ [1], ah] 2
dt
"

[Ĝ[1], ah]J†

3 Hak 1
i
"

dt[Ĥ0 1 V̂ [1], ak] 2
dt
"

[Ĝ[1], ak]J
1

dt
" o

l
R̂ [1]†

hl R̂ [1]
kl
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One can also check that particle number conservations holds, so that +8(N̂ ) 5
0, where N̂ 5 (f a†

f af . In order to consider the microsystem’s degrees of
freedom, we take a partial trace over matter

d
dt

r(1)
kh 5 Tr*(+8(a†

hak)r̂m)

and obtain the following master equation of the Lindblad form for the subdy-
namics of the particle, thus automatically ensuring CP:

d
dt

r̂(1) 5 2
i
"

[Ĥ (1)
0 1 V̂ (1), r̂(1)] 2

1
"

{Ĝ(1), r̂(1)} 1
1
" o

jl
L̂(1)

lj r̂(1)l̂(1)
lj

†

where V̂ (1) and L̂(1) are still linked to the self-adjoint and anti-self-adjoint
parts of the T-matrix averaged over matter, and particle number conservation
implies L̂(1) 5 1/2 (jl L̂(1)

lj L̂(1)
lj . This master equation is well suited to describe

both coherent and incoherent behavior. Apart from a commutator term analo-
gous to a Liouville–von Neumann equation, it has an anticommutator term,
which might be obtained by introducing a complex potential in the Schröd-
inger equation, and a mixture term which is only characteristic of the formal-
ism of the statistical operator. It will here be applied to two examples.

In the first case we consider the mainly coherent interaction of thermal
neutrons with homogeneous samples, so-called neutron optics, relevant for
the description of neutron interferometry experiments [for references and
details see Lanz and Vacchini (1997b)]. The phenomenological Ansatz used
for the description of neutron matter interaction is the Fermi pseudopotential

T̂ 5
2p"2

m
b # d 3r c†(r) d3(x̂ 2 r)c(r)

which is a local potential parametrized by the coherent scattering length b.
Using this Ansatz and leaving out the incoherent, dissipative terms, we obtain
the usual wavelike description of the interaction in terms of a refractive index
n . [1 2 (l2/2p)bno] depending on the density no of particles in the medium.
The dissipative contributions instead can be expressed in terms of the dynamic
structure function of the medium

S(q, w) 5
1

2pN # dt # d 3x e2i(wt2g?x) # d 3y ^N̂(y)N̂(x 1 y, t)&

where "w and "q denote energy and momentum transfer, and N̂(x) 5 c†

(x)c(x) local densities. These terms lead to an imaginary correction to the
optical potential
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Û 5
2p"2

m
noFb 2 i

b2

4p
p0

" # dVq S(q)G
which takes diffuse scattering into account, thus straightforwardly recovering
a result previously obtained through multiple scattering theory. The incoherent
contribution instead accounts for fullfilment of the optical theorem and is
possibly responsible for loss of coherence in interferometric experiments.

The other application concerns so-called quantum Brownian motion
(Vacchini, in preparation). In this case one considers the dissipative dynamics
of a particle interacting with a gas by two-body collisions. Since we are
interested in the local dissipative behavior, we neglect the influence of the
actual boundary conditions, and suppose that the system may be considered
locally homogeneous within a very good approximation, thus analyzing the
interaction in momentum space. Under the assumption of small momentum
transfers, the balance between the anticommutator and incoherent term leads
to a quantum generalization of the Fokker–Planck equation having a CP
structure (Diósi, 1995), while derivations starting at a fundamental level
usually miss positivity of the time evolution (Ambegaokar, 1991), let alone
CP. The equation reads

dr̂
dt

5 2
i
"

[Ĥ0 1 V̂, r̂] 2
1
"2 Dpp o

3

i51
[x̂i , [x̂i , r̂]]

2 Dqq o
3

i51
[p̂i , [p̂i , r̂]] 2

i
"

Dqp o
3

i51
[x̂i , {p̂i, r̂}] (3.2)

where V̂ is a mean-field potential, Dpp is expressed in terms of the scattering
cross section, and

Dqq 5 1 1
4MkT2

2

Dpp, Dqp 5
1

2MkT
Dpp

M being the mass of the particle. Equation (3.2) actually has a Lindblad
structure (Barchielli, 1983), as can be seen by introducing the generators
L̂i 5 x̂i 1 i("/2MkT )p̂i , thus yielding

dr̂
dt

5 2
i
"

[Ĥ0 1 V̂, r̂] 2
i
"

Dpp

4MkT o
3

i51
[{x̂i , p̂i}, r̂]

2 2
Dpp

"2 o
3

i51
F1

2
{L̂†

i L̂i , r̂} 2 L̂ir̂L̂†
iG

We will now briefly sketch how the proposed formal scheme may be
applied to the simplest cases of systems having many degrees of freedom
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[see Lanz et al. (1997) and Lanz and Vacchini (1998) for further details].
Slow variables inside a many-body system, characteristically corresponding
to densities of conserved charges, will have the form

Â(j ) o
hk

a†
hAhk(j )ak , B̂(j ) o

h1h2
k1k2

a†
h2a†

h1Bh2h1k1k2(j )ak1ak2

and similarly for quantities involving a higher number of field operators,
where the couples of indexes hi , ki are linked by a quasi-diagonality condition
due to the slow variability. One is therefore faced with evaluating in the
Heisenberg picture on a time t much longer than collision times, but still
short with respect to the variation time of slow observables,

88(t)(a†
h ak) 5 ei/hĤta†

hake2i/hĤt

or, more generally,

88(t)(a†
hn . . . a†

h1ak1 . . . akn) 5 ei/hĤta†
hn . . . a†

h1ak1 . . . akne
2(i/h)Ĥt

Similarly, as before, we ask that this map 88(t) satisfy a less stringent version
of CP; in fact, we ask CP only when it is applied on these structures of
blocks of field operators in the sufficiently diagonal case, i.e., when acting
on the relevant, slowly varying observables. Analogously as before, calcula-
tions have been put forward using a superoperator formalism, considering a
self-interacting Schrödinger field, i.e., a gas of particles interacting through
a short-range potential, and working in a one-mode approximation, so that
three-particle collisions are neglected. The result for the generator is formally
the same as before,

+8(a†
hak) 5

i
"

[Ĥ0 1 V̂ [2], a†
hak] 2

1
"

{[Ĝ[2], a†
h]ak 2 a†

h[Ĝ[2], ak]}

1
1
" o

l
R̂ [2]†

hl R̂ [2]
kl

but [2] now denotes two-particle operators, and statistical corrections are
properly accounted for in the structure of the T-matrix. A slight generalization
of this result holds in the case of 2n operators.

We therefore hope to have shown new examples of useful application
of the property of CP, indicating how the restriction of the requirement of
CP to a suitable subset of slowly varying quantities might be a guiding
principle in the determination of subdynamics inside nonrelativistic quantum
field theory.
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